Add like
Add dislike
Add to saved papers

Dynamics of local symmetry correlators for interacting many-particle systems.

Recently [P. A. Kalozoumis et al. Phys. Rev. Lett. 113, 050403 (2014)] the concept of local symmetries in one-dimensional stationary wave propagation has been shown to lead to a class of invariant two-point currents that allow to generalize the parity and Bloch theorem. In the present work, we establish the theoretical framework of local symmetries for higher-dimensional interacting many-body systems. Based on the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we derive the equations of motion of local symmetry correlators which are off-diagonal elements of the reduced one-body density matrix at symmetry related positions. The natural orbital representation yields equations of motion for the convex sum of the local symmetry correlators of the natural orbitals as well as for the local symmetry correlators of the individual orbitals themselves. An alternative integral representation with a unique interpretation is provided. We discuss special cases, such as the bosonic and fermionic mean field theory, and show in particular that the invariance of two-point currents is recovered in the case of the non-interacting one-dimensional stationary wave propagation. Finally we derive the equations of motion for anomalous local symmetry correlators which indicate the breaking of a global into a local symmetry in the stationary non-interacting case.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app