Add like
Add dislike
Add to saved papers

Identification of neurovascular changes associated with cerebral amyloid angiopathy from subject-specific hemodynamic response functions.

Cerebral amyloid angiopathy (CAA) is a small-vessel disease preferentially affecting posterior brain regions. Recent evidence has demonstrated the efficacy of functional MRI in detecting CAA-related neurovascular injury, however, it is unknown whether such perturbations are associated with changes in the hemodynamic response function (HRF). Here we estimated HRFs from two different brain regions from block design activation data, in light of recent findings demonstrating how block designs can accurately reflect HRF parameter estimates while maximizing signal detection. Patients with a diagnosis of probable CAA and healthy controls performed motor and visual stimulation tasks. Time-to-peak (TTP), full-width at half-maximum (FWHM), and area under the curve (AUC) of the estimated HRFs were compared between groups and to MRI features associated with CAA including cerebral microbleed (CMB) count. Motor HRFs in CAA patients showed significantly wider FWHM ( P = 0.006) and delayed TTP ( P = 0.03) compared to controls. In the patient group, visual HRF FWHM was positively associated with CMB count ( P = 0.03). These findings indicate that hemodynamic abnormalities in patients with CAA may be reflected in HRFs estimated from block designs across different brain regions. Moreover, visual FWHM may be linked to structural MR indications associated with CAA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app