Add like
Add dislike
Add to saved papers

In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst.

Small 2017 April
Hydrogen evolution reaction (HER) from water electrolysis is an attractive technique developed in recent years for cost-effective clean energy. Although considerable efforts have been paid to create efficient catalysts for HER, the development of an affordable HER catalyst with superior performance under mild conditions is still highly desired. In this work, metal-organic frameworks (MOFs)-templated strategy is proposed for in situ coupling of cobalt phosphide (CoP) polyhedrons nanoparticles and carbon nanotubes (CNTs). Due to the synergistic catalytic effect between CoP polyhedrons and CNTs, the as-prepared CoP-CNTs hybrids show excellent HER performance. The resultant CoP-CNTs demonstrate excellent HER activity in 0.5 m H2 SO4 with Tafel slope of 52 mV dec(-1) , small onset overpotential of ≈64 mV, and a low overpotential of ≈139 mV at 10 mA cm(-2) . Additionally, the catalyst also manifests superior durability in acid media. Considering the structure diversity of MOFs, the strategy presented here can be extended for synthesizing other well-defined metal phosphides-CNTs hybrids, which may be used in the fields of catalysis, energy conversion and storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app