Add like
Add dislike
Add to saved papers

Chronic Sleep Restriction Induces Cognitive Deficits and Cortical Beta-Amyloid Deposition in Mice via BACE1-Antisense Activation.

AIMS: To clarify the correlation between chronic sleep restriction (CSR) and sporadic Alzheimer disease (AD), we determined in wild-type mice the impact of CSR, on cognitive performance, beta-amyloid (Aβ) peptides, and its feed-forward regulators regarding AD pathogenesis.

METHODS: Sixteen nine-month-old C57BL/6 male mice were equally divided into the CSR and control groups. CSR was achieved by application of a slowly rotating drum for 2 months. The Morris water maze test was used to assess cognitive impairment. The concentrations of Aβ peptides, amyloid precursor protein (APP) and β-secretase 1 (BACE1), and the mRNA levels of BACE1 and BACE1-antisense (BACE1-AS) were measured.

RESULTS: Following CSR, impairments of spatial learning and memory consolidation were observed in the mice, accompanied by Aβ plaque deposition and an increased Aβ concentration in the prefrontal and temporal lobe cortex. CSR also upregulated the β-secretase-induced cleavage of APP by increasing the protein and mRNA levels of BACE1, particularly the BACE1-AS.

CONCLUSIONS: This study shows that a CSR accelerates AD pathogenesis in wild-type mice. An upregulation of the BACE1 pathway appears to participate in both cortical Aβ plaque deposition and memory impairment caused by CSR. BACE1-AS is likely activated to initiate a cascade of events that lead to AD pathogenesis. Our study provides, therefore, a molecular mechanism that links CSR to sporadic AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app