Add like
Add dislike
Add to saved papers

Fatigue Effect on Linear Center of Pressure Measures during Gait in People with Flat Feet.

BACKGROUND: Flat foot, as one of the common foot deformities can affect gait biomechanics and risk of lower extremity injury. Fatigue, as a high load task, can also change biomechanical parameters of locomotion. Studying normal and flat footed individuals under high load tasks such as fatigue can elucidate their differences more easily.

OBJECTIVES: In this study, center of pressure (CoP) changes were studied between individuals with flat and normal feet after fatigue. CoP is one of the important gait measures which can show various biomechanical behaviors of different foot shapes.

METHODS: Seventeen subjects with normal feet and 17 with flat feet walked across two force plates before and after a functional fatigue protocol. Standard deviation of CoP in mediolateral direction (SD of CoPx) and in anteroposterior direction (SD of CoPy), overall mean velocity of CoP and length of CoP construction line of both groups were analyzed. The values of SD of CoPy and length of CoP construction line were normalized to individual foot lengths prior to statistical analyses.

RESULTS: There were no significant between-subject effects for all CoP measures. The only significant finding was the within-subject effect for the SD of CoPy (P = 0.008) with a large effect size (partial eta squared = 0.21). Fatigue resulted in lower SD of CoPy in both groups.

CONCLUSIONS: Lower SD of CoPy indicates less fluctuation of CoPy and a probable less center of mass movement which could reduce the risk of injury. Furthermore, the similar fatigue response in both groups of individuals with normal and flat feet indicates a similar biomechanical behavior despite their different foot arch height.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app