Add like
Add dislike
Add to saved papers

A partial differential equation-based general framework adapted to Rayleigh's, Rician's and Gaussian's distributed noise for restoration and enhancement of magnetic resonance image.

The proposed framework is obtained by casting the noise removal problem into a variational framework. This framework automatically identifies the various types of noise present in the magnetic resonance image and filters them by choosing an appropriate filter. This filter includes two terms: the first term is a data likelihood term and the second term is a prior function. The first term is obtained by minimizing the negative log likelihood of the corresponding probability density functions: Gaussian or Rayleigh or Rician. Further, due to the ill-posedness of the likelihood term, a prior function is needed. This paper examines three partial differential equation based priors which include total variation based prior, anisotropic diffusion based prior, and a complex diffusion (CD) based prior. A regularization parameter is used to balance the trade-off between data fidelity term and prior. The finite difference scheme is used for discretization of the proposed method. The performance analysis and comparative study of the proposed method with other standard methods is presented for brain web dataset at varying noise levels in terms of peak signal-to-noise ratio, mean square error, structure similarity index map, and correlation parameter. From the simulation results, it is observed that the proposed framework with CD based prior is performing better in comparison to other priors in consideration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app