Add like
Add dislike
Add to saved papers

Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin.

Journal of Biotechnology 2017 September 21
Plant polyphenols receive significant attention due to their anti-oxidative and health-promoting properties, and several microorganisms are currently engineered towards producing these valuable compounds. Previously, Corynebacterium glutamicum has been engineered for synthesizing polyphenol core structures such as the stilbene resveratrol and the (2S)-flavanone naringenin. Decoration of these compounds by O-methylation or hydroxylation would provide access to polyphenols of even higher commercial interest. In this study, introduction of a heterologous O-methyltransferase into a resveratrol-producing C. glutamicum strain allowed synthesis of 42mg/L (0.16mM) of the di-O-methylated pterostilbene from p-coumaric acid. A prerequisite for reaching this product titer was a fusion of O-methyltransferase with the maltose-binding protein of Escherichia coli lacking its signal peptide, thereby increasing the solubility of the O-methyltransferase. Furthermore, expression of heterologous dioxygenase genes in (2S)-flavanone-producing C. glutamicum strains enabled the production of flavanonols and flavonols starting from the phenylpropanoids p-coumaric acid and caffeic acid. For the flavonols kaempferol and quercetin, maximum product titers of 23mg/L (0.08mM) and 10mg/L (0.03mM) could be achieved, respectively. The obtained results demonstrate that C. glutamicum is a suitable host organism for the production of more complex plant polyphenols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app