JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hanatoxin inserts into phospholipid membranes without pore formation.

Hanatoxin (HaTx), a 35-residue polypeptide from spider venom, functions as an inhibitor of Kv2.1 channels by interacting with phospholipids prior to affecting the voltage-sensor. However, how this water-soluble peptide modifies the gating remains poorly understood, as the voltage-sensor is deeply embedded within the bilayer. To determine how HaTx interacts with phospholipid bilayers, in this study, we examined the toxin-induced partitioning of liposomal membranes. HPLC-results from high-speed spin-down vesicles with HaTx demonstrated direct binding. Dynamic light scattering (DLS) and leakage assay results further indicated that neither membrane pores nor membrane fragmentations were observed in the presence of HaTx. To clarify the binding details, Langmuir trough experiments were performed with phospholipid monolayers by mimicking the external leaflet of membrane bilayers, indicating the involvement of acyl chains in such interactions between HaTx and phospholipids. Our current study thus describes the interaction pattern of HaTx with vesicle membranes, defining a membrane-partitioning mechanism for peptide insertion involving the membrane hydrocarbon core without pore formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app