Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Near-Complete Correction of Profound Metabolomic Impairments Corresponding to Functional Benefit in MPS IIIB Mice after IV rAAV9-hNAGLU Gene Delivery.

Molecular Therapy 2017 March 2
Mucopolysaccharidosis (MPS) IIIB is a lysosomal storage disease with complex CNS and somatic pathology due to a deficiency in α-N-acetylglucosaminidase (NAGLU). Using global metabolic profiling by mass spectrometry targeting 361 metabolites, this study detected significant decreases in 225 and increases in six metabolites in serum samples from 7-month-old MPS IIIB mice, compared to wild-type (WT) mice. The metabolic disturbances involve virtually all major pathways of amino acid, peptide (58/102), carbohydrate (18/28), lipid (111/139), nucleotide (12/24), energy (2/9), vitamin and cofactor (11/16), and xenobiotic (11/28) metabolism. Notably, the reduced metabolites included eight essential amino acids, vitamins (C, E, B2, and B6), and neurotransmitters (serotonin, glutamate, aspartate, tryptophan, and N-acetyltyrosine). The metabolic impairments appear to emerge early during disease progression before the age of 2 months. Importantly, the restoration of NAGLU activity with an intravenous (i.v.) injection of rAAV9-hNAGLU vector led to near-complete correction of all serum metabolite abnormalities, with 201 (87%) metabolites normalized and 30 (13%) over-corrected. While the mechanisms are unclear, our data demonstrate that the lack of NAGLU activity triggers profound functional metabolic disturbances in MPS IIIB. These metabolic impairments respond well to a systemic rAAV9-hNAGLU gene delivery, supporting the surrogate biomarker potential of serum metabolomic profiles for MPS IIIB therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app