Add like
Add dislike
Add to saved papers

Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes.

BACKGROUND: Neovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis.

METHODS: The Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy.

RESULTS: The anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were evidently stimulated on the nanostructured surface, also leading to increased activation of VEGFR2 and eNOS on Ti6Al4V-NTs compared to the control Ti6Al4V alloy. Although the rougher alloy promoted BCAECs viability and proliferation, filopodia formation was poor.

CONCLUSION: The in vitro results suggest that 70 nm diameter NTs manufactured by anodization and cleaned using SOW promotes in vitro endothelial activity, which may improve in vivo angiogenesis supporting a faster clinical osseointegration process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app