JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Widespread changes in mRNA stability contribute to quiescence-specific gene expression patterns in a fibroblast model of quiescence.

BMC Genomics 2017 Februrary 2
BACKGROUND: Quiescence, reversible exit from the cell division cycle, is characterized by large-scale changes in steady-state gene expression, yet mechanisms controlling these changes are in need of further elucidation. In order to characterize the effects of post-transcriptional control on the quiescent transcriptome in human fibroblasts, we determined mRNA decay rates for over 10,000 genes using a transcription shut-off time-course.

RESULTS: We found that ~500 of the genes monitored exhibited significant changes in decay rate upon quiescence induction. Genes involved in RNA processing and ribosome biogenesis were destabilized with quiescence, while genes involved in the developmental process were stabilized with quiescence. Moreover, extracellular matrix genes demonstrated an upregulation of gene expression that corresponded with a stabilization of these transcripts. Additionally, targets of a quiescence-associated microRNA (miR-29) were significantly enriched in the fraction of transcripts that were stabilized during quiescence.

CONCLUSION: Coordinated stability changes in clusters of genes with important functions in fibroblast quiescence maintenance are highly correlated with quiescence gene expression patterns. Analysis of miR-29 target decay rates suggests that microRNA-induced changes in RNA stability are important contributors to the quiescence gene expression program in fibroblasts. The identification of multiple stability-related gene clusters suggests that other posttranscriptional regulators of transcript stability may contribute to the coordination of quiescence gene expression. Such regulators may ultimately prove to be valuable targets for therapeutics that target proliferative cells, for instance, in cancer or fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app