Add like
Add dislike
Add to saved papers

Angiotensin-Converting Enzyme 2 Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice.

Human Gene Therapy 2018 November 14
Recent studies have demonstrated that angiotensin-converting enzyme 2 (ACE2) plays an important role in the pathogenesis of abdominal aortic aneurysms (AAAs). However, few studies have reported the direct effect of ACE2 overexpression on the aneurysm. This study hypothesized that the overexpression of ACE2 may prevent the pathogenesis of aneurysms by decreasing RAS activation. Thirty-nine mice were randomly assigned to three groups (n = 13 in each group): the Ad.ACE2 group, the Ad.EGFP group, and a control group. After 8 weeks of treatment, abdominal aortas with AAAs were obtained for hematoxylin and eosin staining, Verhoeff Van Gieson staining, immunohistochemistry, and Western blotting. The incidence and severity of AAAs, macrophage infiltration, and MMP protein expression were all recorded. The results showed that ACE2 gene transfer significantly decreased the occurrence of AAAs and inhibited AAA formation in ApoE-/- mice by inhibiting the inflammatory response and MMP activation, and the mechanisms may involve decreased ERK and Ang II-nuclear factor kappa B signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app