Add like
Add dislike
Add to saved papers

RODES software for dose assessment of rats and mice contaminated with radionuclides.

In order to support animal experiments of chronic radionuclides intake with realistic dosimetry, voxel-based three-dimensional computer models of mice and rats of both sexes and three ages were built from magnetic resonance imaging. Radiation transport of mono-energetic photons of 11 energies and electrons of 7 energies was simulated with MCNPX 2.6c to assess specific absorbed fractions (SAFs) of energy emitted from 13 source regions and absorbed in 28 target regions. RODES software was developed to combine SAF with radiation emission spectra and user-supplied biokinetic data to calculate organ absorbed doses per nuclear transformation of radionuclides in source regions (S-factors) and for specific animal experiments with radionuclides. This article presents the design of RODES software including the simulation of the particles in the created rodent voxel phantoms. SAF and S-factor values were compared favourably with published results from similar studies. The results are discussed for rodents of different ages and sexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app