JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation.

Scientific Reports 2017 January 32
Researchers in the field of mitochondrial biology are increasingly unveiling of the complex mechanisms between mitochondrial dysfunction and noncoding RNAs (ncRNAs). However, roles of ncRNAs underlying mitochondrial myopathy remain unexplored. The aim of this study was to elucidate the regulating networks of dysregulated ncRNAs in Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) with mitochondrial DNA (mtDNA) A3243G mutation, which might make contributions to the unveiling of the complex mechanisms underlying mitochondrial myopathy and, possibly, new tools applicable to clinical practice. Through high-throughput technology followed by quantitative real-time polymerase chain reaction (qRT-PCR) and bioinformatics analyses, for the first time, we found that the dysregulated muscle miRNAs and lncRNAs between 20 MELAS patients with mtDNA A3243G mutation and 20 controls formed complex regulation networks and participated in immune system, signal transduction, translation, muscle contraction and other pathways in discovery and training phase. Then, selected ncRNAs were validated in muscle and serum in independent validation cohorts by qRT-PCR. Finally, ROC curve analysis indicated reduced serum miR-27b-3p had the better diagnosis value than lactate and might serve as a novel, noninvasive biomarker for MELAS. Follow-up investigation is warranted to better understand roles of ncRNAs in mitochondrial myopathy pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app