JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intra-articular Delivery of Antago-miR-483-5p Inhibits Osteoarthritis by Modulating Matrilin 3 and Tissue Inhibitor of Metalloproteinase 2.

Molecular Therapy 2017 March 2
MicroRNAs (miRNAs) are emerging as important regulators in osteoarthritis (OA) pathogenesis. In our study, a real-time PCR assay revealed that miR-483-5p was upregulated in articular cartilage from OA patients and experimental OA mice induced by destabilization of the medial meniscus compared to their controls. Overexpression of miR-483-5p by intra-articular injection of lentivirus LV3-miR-483-5p significantly enhanced the severity of experimental OA. Consequently, we synthesized antago-miR-483-5p to silence the endogenous miR-483-5p and delivered it intra-articularly, which revealed that antago-miR-483-5p delayed the progression of experimental OA. To investigate the functional mechanism of miR-483-5p in OA development, we generated doxycycline-inducible miR-483 transgenic (TG483) mice. TG483 mice exhibited significant acceleration and increased severity of OA, and age-related OA occurred with higher incidence and greater severity in TG483 mice compared with their controls. Furthermore, our results revealed miR-483-5p directly targeted to the cartilage matrix protein matrilin 3 (Matn3) and tissue inhibitor of metalloproteinase 2 (Timp2) to stimulate chondrocyte hypertrophy, extracellular matrix degradation, and cartilage angiogenesis, and it consequently initiated and accelerated the development of OA. In conclusion, our findings reveal an miRNA functional pathway important for OA development. Targeting of miR-483-5p by intra-articular injection of antago-miR-483-5p represents an approach that could prevent the onset of OA and delay its progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app