Add like
Add dislike
Add to saved papers

Double-stranded RNA-binding artificial cationic oligosaccharides stabilizing siRNAs with a low N/P ratio.

Novel double-stranded RNA (dsRNA)-binding molecules were developed for the effective thermodynamic and biological stabilization of nucleic acids including short interfering RNAs (siRNAs). β-(1→4)-Linked-2,6-diamino-2,6-dideoxy-d-galactopyranose oligomers (ODAGals) were synthesized for this purpose, and their binding ability with dsRNAs was evaluated. Fluorescence anisotropy measurements showed the 3mer and 4mer of ODAGals to be strongly bound (Kd < 0.02 μM). The UV melting experiments demonstrated that the binding of ODAGals to dsRNAs proceeded with significant thermodynamic stabilization of the duplexes. Furthermore, the 4mer of ODAGal was clearly revealed to almost completely protect siRNAs with a low N/P ratio (i.e., N in the oligocationic molecule to P in the siRNA ratio) from cleavage by RNase A. On the basis of these results, ODAGals can serve as promising stabilizers or carriers of dsRNA-based drugs such as RNAi drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app