Add like
Add dislike
Add to saved papers

Investigating the effects of erythrosine B on amyloid fibril formation derived from lysozyme.

Formation of amyloid fibrils has been associated with at least 30 different protein aggregation diseases. The 129-residue polypeptide hen lysozyme, which is structurally homologous to human lysozyme, has been demonstrated to exhibit amyloid fibril-forming propensity in vitro. This study is aimed at exploring the influence of erythrosine B on the in vitro amyloid fibril formation of hen lysozyme at pH 2.0 and 55°C using ThT binding assay, transmission electron microscopy, far-UV circular dichroism absorption spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, and synchronous fluorescence study. We found that lysozyme fibrillogenesis was dose-dependently suppressed by erythrosine B. In addition, our far-UV CD and ANS fluorescence data showed that, as compared with the untreated lysozyme control, the α-to-ß transition and exposure of hydrophobic clusters in lysozyme were reduced upon treatment with erythrosine B. Moreover, it could be inferred that the binding of erythrosine B occurred in the vicinity of the tryptophan residues. Finally, molecular docking and molecular dynamics simulations were further employed to gain some insights into the possible binding site(s) and interactions between lysozyme and erythrosine B. We believe the results obtained here may contribute to the development of potential strategies/approaches for the suppression of amyloid fibrillogenesis, which is implicated in amyloid pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app