JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds.

The purpose of this study is to construct bone tissue engineering scaffold with high porosity, good mechanical properties, and biological activities. Bioactive glass/gelatin composite scaffolds with different amounts of tetrapod zinc oxide whiskers were produced. The morphology, mechanical properties and in vitro bioactivity of the composite scaffolds were investigated. Results showed that, the composite scaffolds had open pores with a high degree of interconnectivity, and the porosity was higher than 80%. With the amount of ZnO whiskers increased, the mechanical properties of scaffolds increased. However, the reinforcing effect began to decrease when the addition is higher than 2wt%, which was resulted by the aggregation of the ZnO whiskers. In vitro test showed that, the composite scaffolds processed good biodegradability, and in vitro apatite-forming ability. The release of zinc ions retarded the growth of the HCA, so the HCA deposited on the scaffolds with ZnO was amorphous and worm-like. Furthermore, the composite scaffolds had good biocompatibility assessed by in vitro cell tests using rMSCs. All results are promising for the application of the composite scaffolds in bone repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app