Add like
Add dislike
Add to saved papers

Congenital Cataract in Gpr161vl/vl Mice Is Modified by Proximal Chromosome 15.

The morphology and severity of human congenital cataract varies even among individuals with the same mutation, suggesting that genetic background modifies phenotypic penetrance. The spontaneous mouse mutant, vacuolated lens (vl), arose on the C3H/HeSnJ background. The mutation disrupts secondary lens fiber development by E16.5, leading to full penetrance of congenital cataract. The vl locus was mapped to a frameshift deletion in the orphan G protein-coupled receptor, Gpr161, which is expressed in differentiating lens fiber cells. When Gpr161vl/vl C3H mice are crossed to MOLF/EiJ mice an unexpected rescue of cataract is observed, suggesting that MOLF modifiers affect cataract penetrance. Subsequent QTL analysis mapped three modifiers (Modvl3-5: Modifier of vl) and in this study we characterized Modvl4 (Chr15; LOD = 4.4). A Modvl4MOLF congenic was generated and is sufficient to rescue congenital cataract and the lens fiber defect at E16.5. Additional phenotypic analysis on three subcongenic lines narrowed down the interval from 55 to 15Mb. In total only 18 protein-coding genes and 2 micro-RNAs are in this region. Fifteen of the 20 genes show detectable expression in the E16.5 eye. Subsequent expression studies in Gpr161vl/vl and subcongenic E16.5 eyes, bioinformatics analysis of C3H/MOLF polymorphisms, and the biological relevancy of the genes in the interval identified three genes (Cdh6, Ank and Trio) that likely contribute to the rescue of the lens phenotype. These studies demonstrate that modification of the Gpr161vl/vl cataract phenotype is likely due to genetic variants in at least one of three closely linked candidate genes on proximal Chr15.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app