Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes.

OBJECTIVE: Inhibition of the renal sodium-glucose cotransporter 2 (SGLT2) is a novel concept in the therapy of diabetes mellitus. In this study, we first assessed whether common single nucleotide polymorphisms (SNPs) in the SGLT2-encoding gene SLC5A2 affect diabetes-related metabolic traits in subjects at risk for type 2 diabetes and, second, whether these have pharmacogenetic relevance by interfering with the response to empagliflozin treatment in patients with type 2 diabetes.

PATIENTS AND METHODS: Samples from a metabolically well-phenotyped cross-sectional study population (total N=2600) at increased risk for type 2 diabetes and pooled pharmacogenetic samples from patients from four phase III trials of empagliflozin (in total: 603 receiving empagliflozin, 305 receiving placebo) were genotyped for five common SNPs (minor allele frequencies ≥5%) present in the SLC5A2 gene locus.

RESULTS: In the cross-sectional study, none of the SLC5A2 SNPs significantly influenced metabolic traits such as body fat, insulin sensitivity/resistance, insulin release, HbA1c, plasma glucose, or systolic blood pressure when multiple testing was taken into account (all P≥0.0083). Further, no relevant effect on response to treatment with empagliflozin on HbA1c, fasting glucose, weight, or systolic blood pressure was observed for the SNPs tested in the pharmacogenetic study.

CONCLUSION: Common genetic variants in the SLC5A2 gene neither affects diabetes-related metabolic traits nor have a clinically relevant impact on response to treatment with the SGLT2 inhibitor empagliflozin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app