Add like
Add dislike
Add to saved papers

The effect of different protease inhibitors on stability of parathyroid hormone, insulin, and prolactin levels under different lag times and storage conditions until analysis.

INTRODUCTION: Proteolytic cleavage through proteases affects peptide hormone levels, which is of particular significance when the time interval between sampling and analysis is prolonged. We evaluated the stability of parathyroid hormone, insulin, and prolactin molecules (i) with different protease inhibitors such as K2 EDTA, aprotinin, and protease inhibitor cocktail (PIC), (ii) with different lag times (6-72 hours), and (iii) under different storage temperatures (4°C vs room temperature [RT]) until analysis.

MATERIALS AND METHODS: Blood samples were collected into 2 sets of 5 Vacutainer® tubes (Becton Dickinson) from 10 healthy adults. Tubes 1 and 2 were plain gel separator tubes. Tubes 3, 4, and 5 contained PIC (1%), aprotinin (500 KIU/mL), and K2 EDTA, respectively. After centrifugation at 1300 g for 10 minutes, PIC added to tube 2 of each set. Samples were analyzed and then one set was stored at 4°C, whereas the other at RT until analysis at 6, 24, 48, and 72 hours. Hormone levels were determined with electrochemiluminescence immunoassay (ModularE170; Roche Diagnostics). The results were compared with desirable bias limits (DBL) from Westgard QC database.

RESULTS: Insulin at RT decreases exceeding the DBL starting from 24 hours and K2 EDTA preserved insulin. PTH exceeded the DBL at RT for 48 hours or longer and PIC addition after centrifugation inhibited its degradation. Prolactin remained stable in all tested conditions. All parameters in the plain gel separator tubes remained within DBL when stored at 4°C until 72 hours.

CONCLUSIONS: Different proteases may degrade peptide hormones and measures should be taken to counteract these effects especially if there is a delay before analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app