Add like
Add dislike
Add to saved papers

A luminescent Pt 2 Fe spin crossover complex.

A heterotrinuclear [Pt2 Fe] spin crossover (SCO) complex was developed and synthesized employing a ditopic bridging bpp-alkynyl ligand L and alkynyl coordinated PtII terpy units: [FeII (L-PtII )2 ]2 (BF4 )2 (1). We identified two different types of crystals of 1 which differ in their molecular packing and the number of co-crystallized solvent molecules: 1H (1·3.5CH2 Cl2 in P1[combining macron]) and 1L (1·10CH2 Cl2 in C2/c); while 1L shows a reversible SCO with a transition temperature of 268 K, the analogous compound 1H does not show any SCO and remains blocked in the HS state. The temperature-dependent magnetic properties of 1H and 1L were complementarily studied by Mössbauer spectroscopy. It has been shown that 1L performs thermal spin crossover and that 1L can be excited to a LIESST state. The vibrational properties of 1 were investigated by experimental nuclear resonance vibrational spectroscopy. The experimentally determined partial density of vibrational states (pDOS) was compared to a DFT-based simulation of the pDOS. The vibrational modes of the different components were assigned and visualized. In addition, the photophysical properties of 1 and L-Pt were investigated in the solid state and in solution. The ultrafast transient absorption spectroscopy of 1 in solution was carried out to study the PL quenching channel via energy transfer from photoexcited PtII terpy units to the FeII -moiety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app