Add like
Add dislike
Add to saved papers

Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering.

Bone tissue engineering (BTE) is emerging as a possible solution for regeneration of bone in a number of applications. For effective utilization, BTE scaffolds often need modifications to impart biological cues that drive diverse cellular functions such as adhesion, migration, survival, proliferation, differentiation, and biomineralization. This review provides an outline of various approaches for building bioactive elements into synthetic scaffolds for BTE and classifies them broadly under two distinct schemes; namely, the top-down approach and the bottom-up approach. Synthetic and natural routes for top-down approaches to production of bioactive constructs for BTE, such as generation of scaffold-extracellular matrix (ECM) hybrid constructs or decellularized and demineralized scaffolds, are provided. Similarly, traditional scaffold-based bottom-up approaches, including growth factor immobilization or peptide-tethered scaffolds, are provided. Finally, a brief overview of emerging bottom-up approaches for generating biologically active constructs for BTE is given. A discussion of the key areas for further investigation, challenges, and opportunities is also presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app