Add like
Add dislike
Add to saved papers

Time course of neuroprotection induced by in vivo normobaric hyperoxia preconditioning and angiogenesis factors.

OBJECTIVES: Every year, a large number of people lose their lives due to stroke. Stroke is the second leading cause of death worldwide. Surprisingly, recent studies have shown that preconditioning with hyperoxia (HO) increases tissue tolerance to ischemia, ultimately reducing damages caused by stroke. Addressed in this study are beneficial contributions from HO preconditioning into reduced harm to be incurred by the attack, as well as its effect on the expression levels of vascular endothelial growth factor (VEGF) and endostatin.

MATERIALS AND METHODS: A set of experiments was conducted where a number of rats were divided into three groups. The animals in the first group received 90% oxygen for 4 hr a day, for 6 days. The second group was housed in room air and the third group was a sham (surgical stress). After 60 min of ischemia, 24 hr blood flow, neurological deficit score (NDS) and infarct volume (IV) in the group MCAO (Middle Cerebral Artery Occlusion) were investigated. Immediately following a 48 hr HO pre-treatment, sampling was performed to measure the expression levels of VEGF and endostatin.

RESULTS: Preconditioning with alternating HO led to reduced infarct volume and NDS. Moreover, pre-treatment with HO resulted in increased VEGF expression while decreasing endostatin.

CONCLUSION: Although further studies are deemed necessary to clarify the mechanisms of ischemic tolerance, apparently, somewhat intermittent hyperoxia can be associated with positive impacts by increasing VEGF and decreasing expression of endostatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app