Add like
Add dislike
Add to saved papers

Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis.

Current Biology : CB 2017 Februrary 21
Different from animal cells that divide by constriction of the cortex inward, cells of land plants divide by initiating a new cell-wall segment from their center. For this, a disk-shaped, membrane-enclosed precursor termed the cell plate is formed that radially expands toward the parental cell wall [1-3]. The synthesis of the plate starts with the fusion of vesicles into a tubulo-vesicular network [4-6]. Vesicles are putatively delivered to the division plane by transport along microtubules of the bipolar phragmoplast network that guides plate assembly [7-9]. How vesicle immobilization and fusion are then locally triggered is unclear. In general, a framework for how the cytoskeleton spatially defines cell-plate formation is lacking. Here we show that membranous material for cell-plate formation initially accumulates along regions of microtubule overlap in the phragmoplast of the moss Physcomitrella patens. Kinesin-4-mediated shortening of these overlaps at the onset of cytokinesis proved to be required to spatially confine membrane accumulation. Without shortening, the wider cell-plate membrane depositions evolved into cell walls that were thick and irregularly shaped. Phragmoplast assembly thus provides a regular lattice of short overlaps on which a new cell-wall segment can be scaffolded. Since similar patterns of overlaps form in central spindles of animal cells, involving the activity of orthologous proteins [10, 11], we anticipate that our results will help uncover universal features underlying membrane-cytoskeleton coordination during cytokinesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app