Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

A Gas Chromatography-Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock.

Monofluoroacetate (MFA) is a potent toxin that occurs in over 50 plant species in Africa, Australia, and South America and is responsible for significant livestock deaths in these regions. A gas chromatography-mass spectrometry (GC-MS) method for the analysis of MFA in plants based on the derivatization of MFA with n-propanol in the presence of sulfuric acid to form propyl fluoroacetate was developed. This method compared favorably to a currently employed high-performance liquid chromatography-mass spectrometry (HPLC-MS) method for the analysis of MFA in plants. The GC-MS method was applied to the analysis of MFA in herbarium specimens of Fridericia elegans, Niedenzuella stannea, N. multiglandulosa, N. acutifolia, and Aenigmatanthera lasiandra. This is the first report of MFA being detected in F. elegans, N. multiglandulosa, N. acutifolia, and A. lasiandra, some of which have been reported to cause sudden death or that are toxic to livestock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app