Add like
Add dislike
Add to saved papers

Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan.

Particle size and surface wettability play leading roles in the distribution of particles on the oil-water interface and the stability of emulsions. This work utilized nanocomplexes assembled from gelatin and tannic acid to stabilize Pickering emulsions. The sizes and surface wettability of particles were further regulated by using a polysaccharide. The sizes of nanocomplexes ranged from 205.8 to 422.2 nm and increased with the addition of polysaccharide. Their contact angles decreased from 84.1° to 59.3°, revealing their hydrophilic nature. Results of fluorescence microscopy and cryo-scanning electron microscopy indicated that nanocomplexes were located at the oil-water interface. Interfacial shear and dilatational rheological data revealed a fast and irreversible adsorption behavior, which differed from rearrangement of gelatin molecules at the oil-water interface. The minimal concentration of nanocomplexes required to stabilize emulsions was 0.1 wt %. Our results demonstrated that protein-polyphenol-polysaccharide nanocomplexes had the potential to be applied to form stable surfactant-free food emulsions for the delivery of nutraceuticals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app