Add like
Add dislike
Add to saved papers

The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells.

RS-4-(4-Hydroxyphenyl)-2-butanol (rhododendrol, RD), a skin-whitening agent, is known to induce leukoderma in some people. To explore the mechanism underlying this effect, we previously showed that the oxidation of RD with mushroom or human tyrosinase produces cytotoxic quinone oxidation products. We then examined the metabolism of RD in B16F1 melanoma cells in vitro and detected RD-pheomelanin and RD-quinone bound to non-protein and protein thiols. In this study, we examined the changes in glutathione (GSH) and cysteine in B16 cells exposed to RD for up to 24 h. We find that the levels of cysteine, but not those of GSH, decrease during 0.5- to 3-h exposure, due to oxidation to cystine. This pro-oxidant activity was then examined using synthetic melanins. Indeed, we find that RD-eumelanin exerts a pro-oxidant activity as potent as Dopa-pheomelanin. GSH, cysteine, ascorbic acid, and NADH were oxidized by RD-eumelanin with a concomitant production of H2 O2 . We propose that RD-eumelanin induces cytotoxicity through its potent pro-oxidant activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app