Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans.

Free-living nematode Caenorhabditis elegans exhibits various behaviors to adapt to the fluctuating environment. When early larvae of C. elegans experience the harsh environmental condition, they develop to an alternative developmental stage called dauer, which shows nictation, a stage-specific waving behavior. Nictation enables dauers to attach to more mobile animals, which helps them disperse to other habitats beyond physical barriers. However, underlying molecular mechanisms that regulate nictation behavior are largely unknown. In this study, we show that insulin signaling and transforming growth beta (TGF-β) signaling, the two major parallel signaling pathways that mediate dauer development, are involved in the regulation of dauer-specific nictation behavior. Genetic analysis revealed that downregulation of insulin signaling enhanced nictation behavior. Heat-shock induced rescue experiments showed that the action period of the insulin signaling is before dauer formation. Surprisingly, lowering of TGF-β signaling inhibited the normal performance of nictation, suggesting that TGF-β signaling acts in an opposite way from that for dauer formation. Cell-specific rescue experiments revealed that two signaling pathways act in the nervous system and an epistasis experiment showed that TGF-β signaling is epistatic to insulin signaling. Taken together, we propose that the neuroendocrinal insulin signaling and TGF-β signaling regulate nictation behavior during development in response to environmental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app