Add like
Add dislike
Add to saved papers

Suppression of inhibitory G protein signaling in forebrain pyramidal neurons triggers plasticity of glutamatergic neurotransmission in the nucleus accumbens core.

Cocaine and other drugs of abuse trigger long-lasting adaptations in excitatory and inhibitory neurotransmission in the mesocorticolimbic system, and this plasticity has been implicated in several key facets of drug addiction. For example, glutamatergic neurotransmission mediated by AMPA receptors (AMPAR) is strengthened in medium spiny neurons (MSNs) in the NAc core and shell during withdrawal following repeated in vivo cocaine administration. Repeated cocaine administration also suppresses inhibitory signaling mediated by G protein-gated inwardly rectifying K+ (GIRK) channels in pyramidal neurons of the prelimbic cortex, an important source of glutamatergic input to the NAc core that has been implicated in cocaine-seeking and behavioral sensitization. Here, we tested the hypothesis that suppression of GIRK channel activity in forebrain pyramidal neurons can promote plasticity of glutamatergic signaling in MSNs. Using novel conditional knockout mouse lines, we report that GIRK channel ablation in forebrain pyramidal neurons is sufficient to enhance AMPAR-dependent neurotransmission in D1 R-expressing MSNs in the NAc core, while also increasing motor-stimulatory responses to cocaine administration. A similar increase in AMPAR-dependent signaling was seen in both D1 R- and D2 R-expressing MSNs in the NAc core during withdrawal from repeated cocaine administration in normal mice. Collectively, these data are consistent with the premise that the cocaine-induced suppression of GIRK-dependent signaling in glutamatergic inputs to the NAc core contributes to some of the electrophysiological and behavioral hallmarks associated with repeated cocaine administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app