JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ryanodine receptor modification and regulation by intracellular Ca 2+ and Mg 2+ in healthy and failing human hearts.

RATIONALE: Heart failure is a multimodal disorder, of which disrupted Ca2+ homeostasis is a hallmark. Central to Ca2+ homeostasis is the major cardiac Ca2+ release channel - the ryanodine receptor (RyR2) - whose activity is influenced by associated proteins, covalent modification and by Ca2+ and Mg2+ . That RyR2 is remodelled and its function disturbed in heart failure is well recognized, but poorly understood.

OBJECTIVE: To assess Ca2+ and Mg2+ regulation of RyR2 from left ventricles of healthy, cystic fibrosis and failing hearts, and to correlate these functional changes with RyR2 modifications and remodelling.

METHODS AND RESULTS: The function of RyR2 from left ventricular samples was assessed using lipid bilayer single-channel measurements, whilst RyR2 modification and protein:protein interactions were determined using Western Blots and co-immunoprecipitation. In all failing hearts there was an increase in RyR2 activity at end-diastolic cytoplasmic Ca2+ (100nM), a decreased cytoplasmic [Ca2+ ] required for half maximal activation (Ka ) and a decrease in inhibition by cytoplasmic Mg2+ . This was accompanied by significant hyperphosphorylation of RyR2 S2808 and S2814 , reduced free thiol content and a reduced interaction with FKBP12.0 and FKBP12.6. Either dephosphorylation of RyR2 using PP1 or thiol reduction using DTT eliminated any significant difference in the activity of RyR2 from healthy and failing hearts. We also report a subgroup of RyR2 in failing hearts that were not responsive to regulation by intracellular Ca2+ or Mg2+ .

CONCLUSION: Despite different aetiologies, disrupted RyR2 Ca2+ sensitivity and biochemical modification of the channel are common constituents of failing heart RyR2 and may underlie the pathological disturbances in intracellular Ca2+ signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app