Add like
Add dislike
Add to saved papers

Enhancement of dielectrophoresis using fractal gold nanostructured electrodes.

Electrophoresis 2017 June
Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern-leaf type self-similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high-conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app