JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MR measurement of luminal water in prostate gland: Quantitative correlation between MRI and histology.

PURPOSE: To determine the relationship between parameters measured from luminal water imaging (LWI), a new magnetic resonance imaging (MRI) T2 mapping technique, and the corresponding tissue composition in prostate.

MATERIALS AND METHODS: In all, 17 patients with prostate cancer were examined with a 3D multiecho spin echo sequence at 3T prior to undergoing radical prostatectomy. Maps of seven MR parameters, called N, T2-short , T2-long , Ashort , Along , geometric mean T2 time (gmT2 ), and luminal water fraction (LWF), were generated using nonnegative least squares (NNLS) analysis of the T2 decay curves. MR parametric maps were correlated to digitized whole-mount histology sections. Percentage area of tissue components, including luminal space, nuclei, and cytoplasm plus stroma, was measured on the histology sections by using color-based image segmentation. Spearman's rank correlation test was used to evaluate the correlation between MR parameters and the corresponding tissue components, with particular attention paid to the correlation between LWF and percentage area of luminal space.

RESULTS: N, T2-short , Along , gmT2 , and LWF showed significant correlation (P < 0.05) with percentage area of luminal space and stroma plus cytoplasm. T2-short and gmT2 also showed significant correlation (P < 0.05) with percentage area of nuclei. Overall, the strongest correlation was observed between LWF and luminal space (Spearman's coefficient of rank correlation = 0.75, P < 0.001).

CONCLUSION: Results of this study show that LWF measured with MRI is strongly correlated with the fractional amount of luminal space in prostatic tissue. This result suggests that LWI can potentially be applied for evaluation of prostatic diseases in which the extent of luminal space differs between normal and abnormal tissues.

LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:861-869.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app