Add like
Add dislike
Add to saved papers

First-principles study of interaction of serine with nucleobases of DNA and RNA.

The nature of interaction between serine-a vital molecule for cancer cell proliferation and nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) is investigated within the framework of Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). To quantify the interaction strength between serine and nucleobases, the corresponding binding energies were computed, showing energetic ordering such that G > C > T > A > U. This shows that the interaction energy of serine with guanine is the highest, while with uracil it is the lowest. The amount of charge transferred is the lowest in case of the serine-guanine complex and highest in case of the serine-uracil complex. The results show the serine-guanine complex to be more stable and to have a salt bridge structure involving the -COOH group. Theoretical analysis based on MP2 and DFT shows that the interaction between the serine and nucleobases is mainly determined by hydrogen bonding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app