Add like
Add dislike
Add to saved papers

The retinoic acid receptor-related orphan receptor α positively regulates tight junction protein claudin domain-containing 1 mRNA expression in human brain endothelial cells.

Members of the claudin family play important roles in the formation of tight junctions (TJs) in several tissues. Claudin domain containing 1 (CLDND1) is homologous to this family and localizes to TJs and the cytoplasm when exogenously expressed in cultured epithelial cell lines. Furthermore, serum antibody levels of CLDND1-derived peptides are elevated in patients with cerebral infection, cardiovascular disease or diabetes mellitus as compared to healthy controls. However, CLDND1 transcriptional regulation remains poorly analyzed and most regional transcription factor binding sites remain to be defined. Notably, the CLDND1 promoter contains a putative response element for retinoic acid receptor-related orphan receptor α (RORα), which is involved in the above-mentioned disorders. In this study, we found that Cldnd1 and Rora mRNA levels are correlated in rat tissues and that RORα overexpression in human brain endothelial cells enhanced CLDND1 transcript expression. In addition, siRNA-mediated knockdown of RORα significantly decreased CLDND1 transcription. An electrophoresis mobility shift assay indicated that RORα binds to the identified response element in a sequence-specific manner. Furthermore, luciferase reporter assays confirmed that RORα interacts with the CLDND1 promoter to enhance transcription. Taken together, our findings strongly suggest that CLDND1 is a direct RORα target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app