Add like
Add dislike
Add to saved papers

NEU1 sialidase controls gene expression and secretion of IL-6 and MCP-1 through NF-κB pathway in 3T3-L1 adipocytes.

A sialidase NEU1 that removes sialic acids from glycoconjugates has been implicated in diverse cellular functions. Aberrant NEU1 activity is associated with various pathologies including lysosomal storage disorder sialidosis, autoimmune diseases and the malignancy and metastasis of cancer cells. We recently reported that NEU1 activity increases during 3T3-L1 adipogenesis and that it is higher in the epididymal fat of obese and diabetic mice. However, the precise functions of NEU1 in adipocytes have not been elucidated. Knockdown of NEU1 using siRNA transfection in 3T3-L1 adipocytes significantly decreased the mRNA expression and protein secretion of IL-6 and MCP-1 induced by LPS. The promoter activities of both IL-6 and MCP-1 as well as nuclear factor-kappa B (NF-κB) nuclear translocation were reduced in adipocytes transfected with an siRNA sequence that targets NEU1(siNEU1). NEU1 suppression using siNEU1 affected TLR4 sialylation. These findings suggest that NEU1 is involved in the production of IL-6 and MCP-1 in adipocytes possibly through TLR4/NF-κB signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app