Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Edgeless Ag-Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation.

Improvements in the performance of electrocatalysts, along with continuing advances in selective pathway for target reaction, have great potential to offer opportunities in designing competitive reactions especially for using a photophysical process owing to its tunable properties. Herein, we demonstrated a first empirical evidence of suppressing the formation of undesired peroxide intermediate through plasmonic effects, in which plasmonic Ag-Pt bimetallic nanocages were synthesized with an edgeless feature, and a custom-made RDE/RRDE working station was designed to provide unique means by which to in situ realize the plasmon-induced effects toward the target reaction. The edgeless Ag-Pt bimetallic nanocages with hollow interior performed newly plasmon-induced effects, which was characteristic of photodependent nature to suppress the formation of undesired peroxide intermediate. We concluded that the plasmon-induced hot electron transfer governed the suppression of peroxide formation instead of plasmon-induced heating that would cause a negative effect (i.e., increase of peroxide yield), in which the hot electron transfer of Ag nanostructure offered a sufficient energy to populate the antibonding orbital of O2 as illustrated by in situ X-ray absorption approach. This rapid light-dependent nature corresponding to localized surface plasmon resonance in present nanocages can potentially offer synergetic strategies toward altering the chemical reactions or reaction pathways in various fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app