Add like
Add dislike
Add to saved papers

Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery.

The efficient design of nanocarriers is a major challenge and must be correlated with the route of administration. Intranasal route is studied for local, systemic or cerebral treatments. In order to develop nanocarriers with suitable properties for intranasal delivery, to achieve brain and to market the product, it is extremely important the simplification of the formulation in terms of raw materials. Surfactants and cryoprotectants are often added to improve structuration and/or storage of polymeric nanoparticles. PLGA-PEG nanocarriers were prepared by nanoprecipitation method evaluating the critical role of sucrose as surfactant-like and cryoprotectant, with the aim to obtain a simpler formulation compared to those proposed in other papers. Photon correlation spectroscopy and Turbiscan analysis show that sucrose is a useful excipient during the preparation process and it effectively cryoprotects nanoparticles. Among the investigated nanocarriers with different degree of PEG, PEGylated PLGA (5%) confers weak interaction between nanoparticles and mucin as demonstrated by thermal analysis and mucin particle method. Furthermore, in vitro biological studies on HT29, as epithelium cell line, does not show cytotoxicity effect for this nanocarrier at all texted concentrations. The selected nanosystem was also studied to load docetaxel, as model drug, and characterized by a technological point of view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app