Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcriptome profile of yeast reveals the essential role of PMA2 and uncharacterized gene YBR056W-A (MNC1) in adaptation to toxic manganese concentration.

Adaptation of S. cerevisiae to toxic concentrations of manganese provides a physiological model of heavy metal homeostasis. Transcriptome analysis of adapted yeast cells reveals upregulation of cell wall and plasma membrane proteins including membrane transporters. The gene expression in adapted cells differs from that of cells under short-term toxic metal stress. Among the most significantly upregulated genes are PMA2, encoding an ortholog of Pma1 H+ -ATPase of the plasma membrane, and YBR056W-A, encoding a putative membrane protein Mnc1 that belongs to the CYSTM family and presumably chelates manganese at the cell surface. We demonstrate that these genes are essential for the adaptation to toxic manganese concentration and propose an extended scheme of manganese detoxification in yeast.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app