JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Emergent Properties of Giant Vesicles Formed by a Polymerization-Induced Self-Assembly (PISA) Reaction.

Scientific Reports 2017 January 28
Giant micrometer sized vesicles are of obvious interest to the natural sciences as well as engineering, having potential application in fields ranging from drug delivery to synthetic biology. Their formation often requires elaborate experimental techniques and attempts to obtain giant vesicles from chemical media in a one-pot fashion have so far led to much smaller nanoscale structures. Here we show that a tailored medium undergoing controlled radical polymerization is capable of forming giant polymer vesicles. Using a protocol which allows for an aqueous reaction under mild conditions, we observe the macroscale consequences of amphiphilic polymer synthesis and the resulting molecular self-assembly using fluorescence microscopy. The polymerization process is photoinitiated by blue light granting complete control of the reaction, including on the microscope stage. The self-assembly process leads to giant vesicles with radii larger than 10 microns, exhibiting several emergent properties, including periodic growth and collapse as well as phototaxis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app