Add like
Add dislike
Add to saved papers

Combination of Magnetic Resonance Angiography and Computational Fluid Dynamics May Predict the Risk of Stroke in Patients with Asymptomatic Carotid Plaques.

BACKGROUND Atherosclerosis plaques in the carotid arteries frequently have been found in patients with stroke. However, the pathogenesis of carotid plaque from asymptomatic to cerebrovascular events is a complex process which is still not completely understood. We aimed to investigate the prognosis of asymptomatic carotid atherosclerotic plaques by use of magnetic resonance angiography (MRA) combined with computational fluid dynamics (CFD). MATERIAL AND METHODS We prospectively studied a cohort of 228 participants (mean age 59.21±8.48) with asymptomatic carotid atherosclerotic plaques; mean follow-up duration was 1147.56±224.84 days. Plaque morphology parameters were obtained by MRA analysis. Lumen area (LA) and total vessel area (TVA) were measured, and wall area (WA=TVA-LA) and normalized wall area index (NWI=WA/TVA) were calculated. CFD analysis was performed to evaluate hemodynamic characteristics, including wall pressure (WP) and wall shear stress (WSS). Independent risk factors for stroke were obtained by Cox regression analysis. The area under the curve (AUC) of receiver operator characteristic (ROC) and Z-statistic test were used to evaluate risk factors. RESULTS Logistics regression analysis showed NWI (OR: 3.472, 95% CI: 2.943-4.096, P=0.11) and WSS (OR: 6.974, 95% CI: 1.070-45.453, P=0.42) were independent risk factors of stroke for patients with asymptomatic carotid plaques. The area under the ROC curve values for WSS, NWI, and WSS+NWI were 0.772, 0.798, and 0.903, respectively. CONCLUSIONS The combination of plaque morphology characteristics NWI and hemodynamic parameter WSS may predict the risk of stroke in patients with asymptomatic carotid plaques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app