Add like
Add dislike
Add to saved papers

Molecular engineering of a mitochondrial-targeting two-photon in and near-infrared out fluorescent probe for gaseous signal molecules H2S in deep tissue bioimaging.

Hydrogen sulfide (H2S), one of the biologically important gaseous signal molecules, plays an essential role in diverse normal biochemical functions and pathological processes. Herein, an efficient two-photon in and near-infrared out mitochondria-targeting dye has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (C˭C) of 4-hydroxybenzaldehyde and 6-(diethylamino)-1,2,3,4-tetrahydroxanthylium (mitochondria-targeting), which possesses large two-photon action absorption cross-section ~160g and high fluorescence quantum yield ~0.15. Encouraged by the results, we proceeded to conjugate this new dye with a H2S recognition moiety (4-dinitrobenzene-ether, DNB), on the basis of the intramolecular charge transfer (ICT) strategy, to construct a novel H2S fluorescent probe (TP-NIR-HS), which shows a targeting ability with high sensitivity and selectivity, and low cytotoxicity. This new probe was then applied for two-photon imaging of living cells and tissues and showed high imaging resolution and a deep-tissue imaging depth of ~350µm, thus demonstrating its practical application in biological systems, and providing a valuable theoretical basis and technical support for the study of physiological and pathological functions of H2S.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app