Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Atraumatic Spine Distraction Induces Metabolic Distress in Spinal Motor Neurons.

Corrective forces during spine deformity surgery, including distraction, impart significant stresses to the spinal cord that may result in permanent injury. Intraoperative neuromonitoring is commonly used by surgeons to recognize possible damage to the spinal cord in cases of evident traumatic or vascular damage to the spinal cord. However, mild insult to the spinal cord that does not result in obvious trauma or electrophysiological changes present a major clinical challenge as the mechanisms of this type of spinal cord injury (SCI) remain largely unknown, and thus preventive strategies are lacking. We used a sustained bidirectional spinal distraction animal model to determine the role of stretch-induced hypoxia in mild SCI. Direct measurement of intraparenchymal oxygen revealed an immediate decrease in partial pressure (47.08 ± 5.79% pO2 ) distal to the injury site following a 5-mm distraction. This hypoxic insult induced mitochondrial dysfunction as evidenced by an acute increase (216%) in protein oxidation 30 min post-injury, as well as a 37% decrease in perikaryal size and a 42% decrease in nuclear area (pyknosis) in ventral motor neurons at the injury site. These results indicate that hypoxic events during mild spine distraction may lead to cellular metabolic impairments and permanent functional deficits. The development of strategies targeting the prevention of hypoxic injury during spine distraction may be useful in protecting the cellular metabolic damage that may occur during spine surgery in the absence of overt mechanical or vascular SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app