Add like
Add dislike
Add to saved papers

Fluoride Regulate Osteoblastic Transforming Growth Factor-β1 Signaling by Mediating Recycling of the Type I Receptor ALK5.

This study aimed to preliminary investigate the role of activin receptor-like kinase (ALK) 5 as one of TGF-βR1 subtypes in bone turnover and osteoblastic differentiation induced by fluoride. We analyzed bone mineral density and the expression of genes related with transforming growth factor-β1(TGF-β1) signaling and bone turnover in rats treated by different concentrations of fluoride with or without SB431542 in vivo. Moreover, MTT assay, alkaline phosphatase staining, RT-PCR, immunocytochemical analysis and western blot analysis were used to detect the influence on bone marrow stem cells (BMSC) after stimulating by varying concentration of fluoride with or without SB431542 in vitro. The in vivo study showed SB431542 treatment affected bone density and gene expression of rats, which indicated TGF-β1 and ALK5 might take part in fluoride-induced bone turnover and bone formation. The in vitro study showed low concentration of fluoride improved BMSC cells viability, alkaline phosphatase activity, and osteocalcin protein expression which were inhibited by high concentration of fluoride. The gene expression of Runx2 and ALK5 in cells increased after low concentration fluoride treatment which was also inhibited by high concentration of fluoride. Fluoride treatment inhibited gene and protein expression of Samd3 (except 1 mgF-/L). Compared with fluoride treatment alone, cells differentiation was inhibited with SB431542 treatment. Moreover, the expression of Runx2, ALK5 and Smad3 were influenced by SB431542 treatment. In conclusion, this preliminary study indicated that fluoride regulated osteoblastic TGFβ1 signaling in bone turnover and cells differentiation via ALK5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app