Add like
Add dislike
Add to saved papers

Mass Transport Phenomena in Lipid Oxidation and Antioxidation.

In lipid dispersions, the ability of reactants to move from one lipid particle to another is an important, yet often ignored, determinant of lipid oxidation and its inhibition by antioxidants. This review describes three putative interparticle transfer mechanisms for oxidants and antioxidants: (a) diffusion, (b) collision-exchange-separation, and (c) micelle-assisted transfer. Mechanism a involves the diffusion of molecules from one particle to another through the intervening aqueous phase. Mechanism b involves the transfer of molecules from one particle to another when the particles collide with each other. Mechanism c involves the solubilization of molecules in micelles within the aqueous phase and then their transfer between particles. During lipid oxidation, the accumulation of surface-active lipid hydroperoxides (LOOHs) beyond their critical micelle concentration may shift their mass transport from the collision-exchange-separation pathway (slow transfer) to the micelle-assisted mechanism (fast transfer), which may account for the transition from the initiation to the propagation phase. Similarly, the cut-off effect governing antioxidant activity in lipid dispersions may be due to the fact that above a certain hydrophobicity, the transfer mechanism for antioxidants changes from diffusion to collision-exchange-separation. This hypothesis provides a simple model to rationalize the design and formulation of antioxidants and dispersed lipids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app