Add like
Add dislike
Add to saved papers

1,3-Bis(thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells.

A small molecule TBTT-1 with 5-(2-ethylhexyl)-1,3-bis(2-(2-ethylhexyl)thieno[3,4-b]thiophen-6-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (TBTT) as the central moiety was designed and synthesized for solution-processed bulk-heterojunction solar cells. TBTT-1 exhibits a broad absorption with a low optical band gap of approximately 1.53 eV in the thin film. An optimized power conversion efficiency (PCE) of 7.47% with a high short-circuit current of 14.95 mA cm-2 was achieved with diphenyl ether (DPE) as additive, which is the highest PCE for TPD-based small-molecule solar cells. According to the detailed morphology investigations, we found that DPE processing helped to enhance π-π stacking and reduce the scales of phase separation, which led to improved exciton splitting and charge transport in BHJ thin film, and thus enhanced device performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app