Add like
Add dislike
Add to saved papers

Chemical Characterization of Low Molecular Weight Soluble Microbial Products in an Anaerobic Membrane Bioreactor.

Effluents from wastewater treatment systems contain a variety of organic compounds, including end products from the degradation of influent substrates, nonbiodegradable feed compounds, and soluble microbial products (SMPs) produced by microbial metabolism. It is important to identify the major components of these SMPs to understand what is in wastewater effluents. In this study, physical pretreatments to extract and concentrate low molecular weight SMPs (MW< 580 Da) from effluents were optimized. Liquid-liquid extraction (LLE) of a 200 mL effluent sample showed the best performance using a mixture of n-hexane, chloroform, and dichloromethane (70 mL) for extraction. For solid phase extraction (SPE), two OasisHLB cartridges were connected in-line to optimize recovery, and the eluted samples from each cartridge were analyzed separately to avoid overlapping peaks. Four solvents varying from polar to nonpolar (methanol, acetone, dichloromethane, and n-hexane) were selected to maximize the number of compound peaks eluted. A combination of SPE (OasisHLB) followed by LLE was shown to maximize compound identification and quantification. However, the compounds identified accounted for only 2.1 mg of chemical oxygen demand (COD)/L (16% of total SMP as COD) because many SMPs have considerably higher MWs. Finally, the method was validated by analyzing a variety of different reactor effluents and feeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app