Add like
Add dislike
Add to saved papers

Hybrid Network Model for "Deep Learning" of Chemical Data: Application to Antimicrobial Peptides.

We present a "deep" network architecture for chemical data analysis and classification together with a prospective proof-of-concept application. The model features a self-organizing map (SOM) as the input layer of a feedforward neural network. The SOM converts molecular descriptors to a two-dimensional image for further processing. We implemented lateral neuron inhibition for contrast enhancement. The model achieved improved classification accuracy and predictive robustness compared to feedforward network classifiers lacking the SOM layer. By nonlinear dimensionality reduction the networks extracted meaningful chemical features from the data and outperformed linear principal component analysis (PCA). The learning machine was trained on the sequence-length independent recognition of antibacterial peptides and correctly predicted the killing activity of a synthetic test peptide against Staphylococcus aureus in an in vitro experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app