Add like
Add dislike
Add to saved papers

MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by targeting DNA methyltransferase 3A.

Oncology Letters 2017 January
It is well established that transcriptional silencing of critical tumor suppressor genes by DNA methylation is a fundamental process in the initiation of lung cancer. However, the involvement of microRNAs (miRNAs) in restoring abnormal DNA methylation patterns in lung cancer is not well understood. Therefore, and since miRNA-101 is complementary to the 3'-untranslated region of DNA methyltransferase 3A (DNMT3A), we investigated whether miRNA-101 could restore normal DNA methylation patterns in lung cancer cell lines. Bioinformatics has indicated that DNMT3A is a major target of miR-101. In addition, the overexpression of miR-101 downregulates DNMT3A. Using a methylation-specific polymerase chain reaction assay, we demonstrated that methylation of the phosphatase and tensin homolog (PTEN) promoter was reduced in A549 cells transfected with miR-101, but not in the transfected control. Furthermore, overexpression of miR-101 and silencing of DNMT3A suppressed lung cell proliferation and S/G2 transition, and increased apoptosis through the PTEN/AKT pathway in vitro. Furthermore, we observed the opposite phenomenon in A549 cells transfected with a miR-101 inhibitor. Subsequent investigation revealed that overexpression of miR-101 significantly inhibited the tumorigenicity of A549 cells in a nude mouse xenograft model. These results demonstrate that miR-101 affects lung cancer progression through the PTEN/AKT signaling pathway by targeting DNMT3A in lung cells, suggesting that miR-101 may be a novel potential therapeutic strategy in lung cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app