Journal Article
Review
Add like
Add dislike
Add to saved papers

Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders.

The management of neurological disorders have huge and increasing human and economic costs. Despite this, there is a scarcity of effective therapeutics, and there is an extreme urgency for new and real treatments. In this short review we analyze some promising advancements in the search of new bioactive molecules targeting neuronal nitric oxide synthase (nNOS), an enzyme deputed to the biosynthesis of nitric oxide (NO). In different conditions of neuronal damages, this molecule is overproduced, contributing to the pathogenesis and progression of neuronal diseases. Two main approaches to modulate nNOS are discussed: a first one consisting in the direct inhibition of the enzyme by means of small organic molecules, which can be also active against other different targets involved in such diseases. A second section is dedicated to molecules able to prevent the formation of the ternary complex N-methyl-D-aspartate (NMDA)-type glutamate receptors, postsynaptic density-95 (PSD95) protein-nNOS, which is necessary to activate the latter for the biosynthesis of NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app